

HLPB-5324x-L2(D)

1.25Gbps SFP Bi-Directional Transceiver, 20km Reach

Features

- Dual data-rate of 1.25Gbps/1.063Gbps operation
- 1550nm DFB laser and PIN photodetector for 20km transmission
- Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitoring:

Internal Calibration or External Calibration

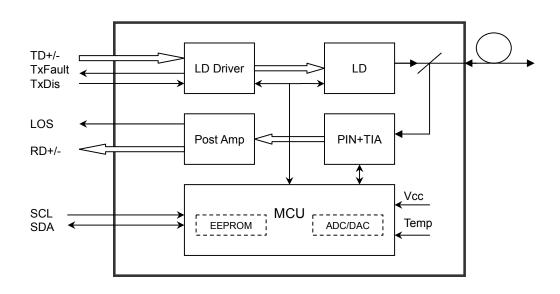
- Compatible with SONET OC-24-LR-1
- Compatible with RoHS
- +3.3V single power supply
- Operating case temperature:

Standard: 0 to +70°C

Applications

- Gigabit Ethernet
- Fiber Channel
- Switch to Switch interface
- Switched backplane applications
- Router/Server interface
- Other optical transmission systems

Description


The SFP-BIDI transceivers are high performance, cost effective modules supporting dual data-rate of 1.25Gbps/1.0625Gbps and 20km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Address: A#, Jinshun Building, Ruyi Road, Longgang, Shenzhen, CHINA TEL: 86-755-8961736 FAX: 86-755-28961736

Http://www.he-link.com sales@he-link.com

Absolute Maximum Ratings

Table 1 - Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Table 2 - Recommended Operating Conditions

	Parameter		Symbol	Min	Typical	Max	Unit	
Operating Cas	se Temperature	Standard	Тс	0		+70	°C	
Power Supply	Voltage		Vcc	3.13	3.3	3.47	V	
Power Supply	Current		Icc			300	mA	
Data Data	Gigabit Ethernet				1.25		Chno	
Data Rate	Fiber Channel				1.063		- Gbps	

Optical and Electrical Characteristics

HLPB-5324x-L2(D): (DFB and PIN, 20km Reach)

Table 3 - Optical and Electrical Characteristics

T abic 5	Optical and Licetifical Orial actoristics						
	Parameter	Symbol	Min	Typical	Max	Unit	Notes
Transmitter							

Address: A#, Jinshun Building, Ruyi Road, Longgang, Shenzhen, CHINA TEL: 86-755-8961736 FAX: 86-755-28961736

Http://www.he-link.com sales@he-link.com

Centre V	Vavelength	λс	1530	1550	1570	nm	
Spectral Width (-20dB)		Δλ			1	nm	
Side Mode Su	uppression Ratio	SMSR	30			dB	
Average C	Output Power	Pout	-9		0	dBm	1
Extinct	tion Ratio	ER	9			dB	
Optical Rise/Fal	I Time (20%~80%)	tr/tf			0.26	ns	
Data Input S	wing Differential	V _{IN}	400		1800	mV	2
Input Differer	ntial Impedance	Z _{IN}	90	100	110	Ω	
TX Disable	Disable		2.0		Vcc	V	
1 A Disable	Enable		0		0.8	V	
TX Fault	Fault		2.0		Vcc	V	
I A Fault	Normal		0		0.8	V	
			Receive	er			
Centre V	Vavelength	λc	1260		1360	nm	
Receive	Sensitivity				-23	dBm	3
Receive	r Overload		-3			dBm	3
LOS	LOS De-Assert				-24	dBm	
LOS Assert		LOS _A	-30			dBm	
LOS Hysteresis			1		4	dB	
Data Output S	Data Output Swing Differential		400		1800	mV	4
	.OS	High	2.0		Vcc	V	
L	.03	Low			0.8	V	

Notes:

- 1. The optical power is launched into SMF.
- PECL input, internally AC-coupled and terminated.
 Measured with a PRBS 2⁷-1 test pattern @1250Mbps, BER ≤1×10⁻¹².
- 4. Internally AC-coupled.

Timing and Electrical

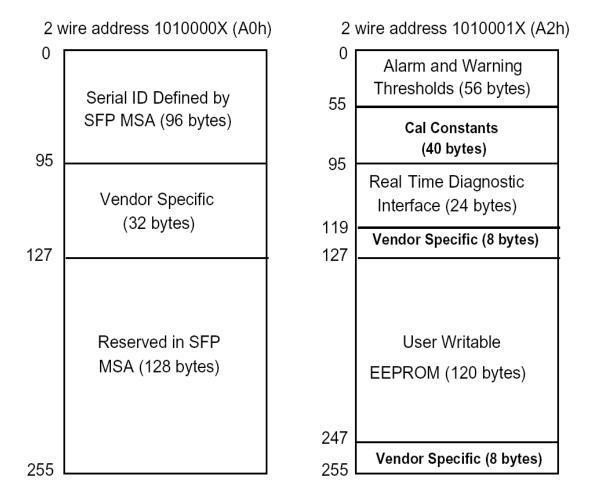
Table 4 - Timing and Electrical

Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs

Time To Initialize, including Reset of Tx Fault	t_init		300	ms
Tx Fault Assert Time	t_fault		100	μs
Tx Disable To Reset	t_reset	10		μѕ
LOS Assert Time	t_loss_on		100	μs
LOS De-assert Time	t_loss_off		100	μѕ
Serial ID Clock Rate	f_serial_clock		400	KHz
MOD_DEF (0:2)-High	V _H	2	Vcc	V
MOD_DEF (0:2)-Low	VL		0.8	V

Diagnostics

Table 5 - Diagnostics Specification


Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	0 to 100	mA	±10%	Internal / External
TX Power	-9 to 0	dBm	±3dB	Internal / External
RX Power	-23 to -3	dBm	±3dB	Internal / External

Digital Diagnostic Memory Map

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

Pin Definitions

Pin Diagram

20 [VeeT	1 VeeT		
19	TD-	2 TxFault		
18 [TD+	3 Tx Disable		
17	VeeT	4 MOD-DEF(2)		
16	VccT	5 MOD-DEF(1)		
15	VccR	6 MOD-DEF(0)		
14 [VeeR	7 Rate Select		
13 [RD+	8 LOS		
12	RD-	9 VeeR		
11 [VeeR	10 VeeR		
	Top of Board Bottom of Board (as viewed thru top of board)			

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	MOD_DEF(2)	SDA Serial Data Signal	3	Note 3
5	MOD_DEF(1)	SCL Serial Clock Signal	3	Note 3
6	MOD_DEF(0)	TTL Low	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	V _{EER}	Receiver ground	1	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	V _{EER}	Receiver ground	1	

15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	V _{EET}	Transmitter Ground	1	

Plug Seq.: Pin engagement sequence during hot plugging.

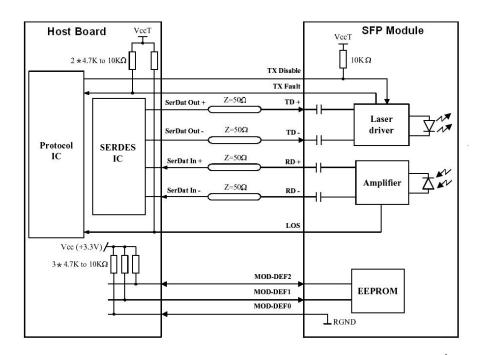
- 1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7k\sim10kΩ$ resistor. Its states are:

Low (0 to 0.8V): Transmitter on Undefined (>0.8V, < 2.0V):

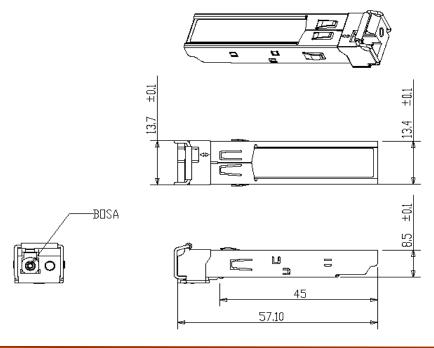
High (2.0 to 3.465V): Transmitter Disabled Open: Transmitter Disabled

- 3) Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7k~10kΩ resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present

Mod-Def 1 is the clock line of two wire serial interface for serial ID


- Mod-Def 2 is the data line of two wire serial interface for serial ID
- 4) LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor. Pull up voltage between 2.0V and Vcc+0.3V. Logic 1 indicates loss of signal; Logic 0 indicates normal operation. In the low state, the output will be pulled to less than 0.8V.
- 5) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Address: A#, Jinshun Building, Ruyi Road, Longgang, Shenzhen, CHINA Page 7 of 9 TEL: 86-755-8961736 FAX: 86-755-28961736


v1.1

sales@he-link.com Http://www.he-link.com

Recommended Interface Circuit

Mechanical Dimensions

Address: A #, Jinshun Building, Ruyi Road, Longgang, Shenzhen, CHINA

TEL: 86-755-8961736 FAX: 86-755-28961736 <u>Http://www.he-link.com</u> <u>sales@he-link.com</u>

Ordering information

Part Number	Product Description
HLPB-5324S-L2	1550nm, 1.25Gbps, SC,20km, 0°C~+70°C
HLPB-5324S-L2D	1550nm, 1.25Gbps, SC,20km, 0°C~+70°C, With Digital Diagnostic Monitoring
HLPB-5324L-L2	1550nm, 1.25Gbps, LC,20km, 0°C~+70°C
HLPB-5324L-L2D	1550nm, 1.25Gbps, LC,20km, 0°C~+70°C, With Digital Diagnostic Monitoring

Web: http://www.he-link.com

Address: A #, Jinshun Building, Ruyi Road, Longgang, Shenzhen, CHINA Page 9 of 9 TEL: 86-755-8961736 FAX: 86-755-28961736 v1.1

Http://www.he-link.com sales@he-link.com